An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

نویسندگان

  • Byron D. Erath
  • Michael W. Plesniak
چکیده

Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40 represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior–posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20 , with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40 , the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40 divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of asymmetric flow features in a scaled-up driven model of the human vocal folds

Flow through a driven, 7.5 times life-size vocal fold model was investigated at corresponding life-size flow rates of Qmean = 89.1 ml/s, 159.4 ml/s, and 253.0 ml/s. The flow was scaled to match physiological values for Reynolds, Strouhal, and Euler numbers. The models were driven at a life-size frequency of 94 Hz. Particle image velocimetry (PIV) data were acquired in the anterior– posterior mi...

متن کامل

Avicenna's Anatomical Legacy as Seen Through the Relevant Topics in Modern Anat-omy

Background: Makhaarej Al-Horouf, the study of speech sounds by Avicenna is a valuable piece of work in the study of speech sounds, which was written about ten centuries ago. It contains six chapters on sound, anatomy of vocal tract, and phonetics. It is amazing to find that Avicenna’s explanations are congruent with the findings of modern scholarship in relevant topics. The study was intended t...

متن کامل

Impact of wall rotation on supraglottal jet stability in voiced speech.

Supraglottal jet variability was investigated in a scaled-up flow facility incorporating driven vocal fold models with and without wall rotation. Principle component analysis was performed on the experimental supraglottal flow fields to ascertain the roll of glottal wall motion on the development of the supraglottal jet. It is shown that intraglottal flow asymmetries that develop due to wall ro...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

Investigation of flow and heat transfer of nanofluid in a diverging sinusoidal channel

Using of nanofluids and ducts with corrugated walls are both supposed to enhance heat transfer, by increasing the heat transfer fluid conductivity and the heat transfer area respectively. Use of a diverging duct with a jet at inlet section may further increase heat transfer by creating recirculation zones inside the duct. In this work two-dimensional incompressible laminar flow of a nanofluid e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006